Galerkin Finite Element Methods with Symmetric Pressure Stabilization for the Transient Stokes Equations: Stability and Convergence Analysis
نویسندگان
چکیده
We consider the stability and convergence analysis of pressure stabilized finite element approximations of the transient Stokes’ equation. The analysis is valid for a class of symmetric pressure stabilization operators, but also for standard, inf-sup stable, velocity/pressure spaces without stabilization. Provided the initial data is chosen as a specific (method dependent) Ritz-projection, we get unconditional stability and optimal convergence for both pressure and velocity approximations, in natural norms. For arbitrary interpolations of the initial data, a condition between the space and time discretization parameters has to be verified in order to guarantee pressure stability. Key-words: Transient Stokes’ equations, finite element methods, symmetric pressure stabilization, time discretization, Ritz-projection Preprint submitted to the SIAM Journal on Numerical Analysis. ∗ University of Sussex, UK; e-mail: [email protected] † INRIA, REO team; e-mail: [email protected] Méthodes de Galerkin avec stabilisation symétrique de la pression pour l’équation de Stokes transitoire: analyse de stabilité et de convergence Résumé : On considère l’analyse de stabilité et convergence de méthodes d’éléments finis stabilisées pour l’équation de Stokes transitoire. L’analyse est valable pour des stabilisations symétriques et faiblements consistantes de la pression. Si l’approximation de la vitesse initiale est donnée par un pro jection de Ritz spécifique, dépendante de la stabilisation, on montre stabilité inconditionnelle et convergence optimale pour la vitesse et la pression, dans des normes naturelles. Par contre, pour des approximations arbitraires de la vitesse initiale, la stabilité de la pression est soumise à une condition entre les param‘etres de discrétisation en espace et en temps. Mots-clés : Équation de Stokes transitoire, méthode d’éléments finis, stabilisation symétrique de la pression, discrétisation en temps, projection de Ritz Stabilized FEM for the transient Stokes’ equations 3
منابع مشابه
A multiscale finite element method for the incompressible Navier–Stokes equations
This paper presents a new multiscale finite element method for the incompressible Navier–Stokes equations. The proposed method arises from a decomposition of the velocity field into coarse/resolved scales and fine/unresolved scales. Modeling of the unresolved scales corrects the lack of stability of the standard Galerkin formulation and yields a method that possesses superior properties like th...
متن کاملStable finite-element calculation of incompressible flows using the rotation form of convection
Conforming finite-element approximations are considered for the incompressible Navier– Stokes equations with nonlinear terms written in the convection or rotation forms. Implicit time integration results in nice stability properties of auxiliary problems which can be solved by efficient numerical algorithms. The original nonlinear system admits relatively simple stabilization strategies. The pa...
متن کاملAnalysis of Stabilization Operators in a Galerkin Least-Squares Finite Element Discretization of the Incompressible Navier-Stokes Equations
Abstract In this paper the design and analysis of a dimensionally consistent stabilization operator for a time-discontinuous Galerkin least-squares finite element method for unsteady viscous flow problems governed by the incompressible Navier-Stokes equations, is discussed. The analysis results in a class of stabilization operators which satisfy essential conditions for the stability of the num...
متن کاملA New Numerical Method for Solving the Stokes Problem Using Quadratic Programming
Developing solutions to the Stokes equations has attracted many researchers because of its practical importance in the field of fluid mechanics. However, due to the nonlinear nature of Stokes equations the main stream of the solutions procedures are in fact numerical methods, which have been developed considerably in recent years because of the amazing advances in computing power and speed. How...
متن کاملAn Equal-Order DG Method for the Incompressible Navier-Stokes Equations
We introduce and analyze a discontinuous Galerkin method for the incompressible Navier-Stokes equations that is based on finite element spaces of the same polynomial order for the approximation of the velocity and the pressure. Stability of this equal-order approach is ensured by a pressure stabilization term. A simple element-by-element postprocessing procedure is used to provide globally dive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 47 شماره
صفحات -
تاریخ انتشار 2008